Ground-based astronomical observations are limited by atmospheric tur bulence, which, to the naked eye, produces the twinkling of stars. The term seeing refers to the blurring of light from celestial objects caused by the atmosphere. Optical turbulence is caused by the mixing of parcels of
air with different temperatures and hence density. The refractive index of air depends on its density and so turbulence at a boundary of air parcels with different temperatures creates a continuous screen of spatially and temporally varying refractive indices. The wavefront from an astronomical source can be considered flat at the top of the Earth's atmosphere (Fig. 1). As it propagates to the ground it becomes distorted by the optical turbulence which forms a limit to the precision of measurements
The effect of optical turbulence is twofold. The first effect is to deform the the angular resolution of ground-based telescopes. The second effect is to locally focus and defocus the wavefront, which results in spatial intensity fluctuations, or speckles, in the pupil plane of a telescope, a phenomenon known as scintillation. It is the higher altitude turbulence that is primarily responsible for this effect. This is different to the phase aberrations caus ing images to blur, which is dominated by the strongest turbulent layer

Measuring seeing: Differential Image Motion Monitor Atmospheric seeing can be determined using a Differential Image Motion Monitor (DIMM). Its working principle is based on Sarazin \&
Roddier (1990), and is described by Vernin \& Muñoz-Tuñón (1995). Roddier (1990), and is described by Vernin \& Munoz-Tunon (1995). telescope win a two-pupil mask at the aperture. One of the sub-pupils has an optical wedge, so that on the focal plane two images of the ob
 sified CCD registers the relative position of both images tens of times per second and, after at least 200
images, provides a statistical value of the seeing based on the varia tions of this relative position. A DIMM is not sensitive to the tele-
scope shake and guiding errors and scope shake and guicing errors and ing the pointing tolerance. These features and relative simplicity con tribute to the popularity of this in strument, which became the stan
\qquad dard for seeing measurements. The DIMM setup used at Skinakas mosphere to the mask apertures and of $12^{\prime \prime} f / 10$ LX200 (optical diamete 200 frames, the variance of the differential 305 mm , focal length 3048 mm image positions is calculated and related to
the seeing using the standard theory of op- Schmidt-Cassegrain telescope the seeing using the standard theory of op- equipped with a Watec WAT-
tical turbulence. video CCD camera for image capture. The dual star image in our case video CCD camera for image capture. The dual star image in our case,
was obtained by setting the telescope slightly out of focus, which was obtained by setting the telescope slightly out of focus, which on seeing measurements was studied, among others, by Tokovinin \& Kornilov (2007) and Benkhaldoun \& Hach (2008), who recommend to discard frames whith Strehl's ratio below 0.3. In our measurements, all exposures turned out to have a Strenis ratio well above 0.5

Data Acquisition

Observations took place in August 2014 (18-23) and in 2015: June (20-21), July ($10-12,14,18-20$), August (12, 15-18), September (12 mag $0-3.5$) was monitored near zenith for as long as its altitude remained above 60°. Afterwards, the telescope slewed to a new bright star and the

Number of pixels	720×576
Pixel scale ${ }^{(*)}$	$0!488 \times 0.447$
Observed wavelength	500 nm
Exposure time	$1-4 \mathrm{~ms}$
Number of frames used for each seeing measurement	200 (every 8
Mask sub-aperture diameter (D)	50.6 mm
Mask sub-aperture separation (d)	247.5 mm

sequence continued for the rest of the night, as long as weather conditions were favorable. Telescope guiding was not activated throughout the observing campaign.

Ater the completion of each exposure, the software detected and computed the centroid position of the two stellar images, their maximum and total intensity (to compute Streh''s ratio and the scintiliation index), whic were written to a text file along with the Julian date time-stamp of the exposure and relevant information concerning the target star.

Data Processing

DIMM is basically an instrument to measure the Fried parameter r_{0}, which is defined as the diameter of a circular area over which parameter r_{0}, whic aberration due to passage through the atmosphere is equal to 1 radian. In practice, the parameter r_{0} is the diameter of a telescope whose diffractionlimited resolving power equals the resolving power limited by the seeing. The variance of the differential image motion σ_{d}^{2} is related to the Fried parameter r_{0} (Tokovinin, 2002)

$$
\sigma_{\mathrm{d}}^{2}=K \lambda^{2} r_{0}^{-5 / 3} D^{-1 / 3}
$$

with λ the wavelength for which r_{0} is given, D the mask sub-aperture diameter and K a proportionality constant. On the other hand, the seein ϵ_{ϵ} is the full width at half maximum (FWHM) of the point-spread function
(PSF) of a star for long exposures with a large telescope, and is computed through the equation

$$
\begin{equation*}
\epsilon_{0}=\frac{0.98 \lambda}{r_{0}}=0.98\left(\frac{D}{\lambda}\right)^{1 / 5}\left(\frac{\sigma_{\mathrm{d}}^{2}}{K}\right)^{3} \tag{2}
\end{equation*}
$$

The constant K depends on the ratio of sub-aperture separation d to their diameter D, i.e. $b=d / D$ and on the direction of image motion (longitudinal, along the line connecting the sub-apertures centers, or transverse in the orthogonal direction) (Tokovinin, 2002)

$$
\begin{aligned}
& K_{1}=0.364\left(1-0.532 b^{-1 / 3}-0.024 b^{-7 / 3}\right) \\
& K_{\mathrm{t}}=0.364\left(1-0.798 b^{-1 / 3}+0.018 b^{-7 / 3}\right)
\end{aligned}
$$

(3)

Finally, combining Eqs. 1,2 and 3 , one gets two estimates of the seeing, corrected for the zenith distance dependence, to obtain seeing estimates referring to zenith. No further data de-debiasing (e.g. detector readout noise, exposure-time bias) was performed
$\epsilon_{\mathrm{l}}=0.98\left(\frac{D}{\lambda}\right)^{1 / 5}\left(\frac{\sigma_{1}^{2}}{K_{1} X_{\text {eff }}}\right)^{3 / 5}, \epsilon_{\mathrm{t}}=0.98\left(\frac{D}{\lambda}\right)^{1 / 5}\left(\frac{\sigma_{\mathrm{t}}^{2}}{K_{\mathrm{t}} X_{\text {eff }}}\right)^{3 / 5} \quad$ (4) with $X_{\text {eff }}$ the effective airmass at the moment of data acquisition. The final seeing measurement is obtained by averaging the longitudinal and transverse estimates, $\epsilon_{0}=\left(\epsilon_{1}+\epsilon_{\mathrm{t}}\right) / 2$. Alternatively, Kornilov \& Safonov (2011) suggest to use the "total differential image motion" variance, $\sigma_{\mathrm{c}}^{2}=$ $\sigma_{1}^{2}+\sigma_{t}^{2}$, which provides a simpler interpretation of the observational data and with main advantage its weak dependence on the wind direction. In this case

$$
\epsilon_{0}=0.98\left(\frac{D}{\lambda}\right)^{1 / 5}\left(\frac{\sigma_{1}^{2}+\sigma_{\mathrm{t}}^{2}}{\left(K_{1}+K_{\mathrm{t}}\right) X_{\text {eff }}}\right)
$$

(5)

The results obtained by the two approaches do not differ by more than 1.5\%. In this report we have chosen to use Eq. 5
ur data allows us to estimate, also, the scintillation index s^{2}, defined as $=\left\langle\Delta I^{2}\right\rangle\left\langle\langle \rangle^{2}\right.$, with I the instantaneous light intensity received through

Results: The Ground Truth

Figure 5. An Ugly night

Seeing Statistics

Comparison with Other Observatories
 Seeing measurements
were obtained from other observatories other observatories
archives, corresponding exactly to the same observing nights as i this campaign.

Cumbe
Figure 9 . Cumulative seeing
distributions

NOT BAD at all!

References
Benkhaldoun, Z. \& Hach, Y. 2008 , in Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series $, ~, ~$,
, (SPIE) Conference Series, Vol. 7014 , Ground-based and Airborne Instrumentation for Astronomy II, ed. I. S. MCLean \& M. M. Casali, 70147
Korniov, V. \& Safonov, B. 2011, MNRAS, 418,187
Sarazin, M. \& Roddier, F. 1990, A\&A, 227, 294
Sarazin, M. \& Roddier, F. 1990, A\&A
fokovinin, A. 2002, PASP, 114, 1156
Tokovinin, A. \& Korrilov, V. 2007, MNRAS, 381, 1179

